Voronezh, Voronezh, Russian Federation
Voronezh, Voronezh, Russian Federation
Under the conditions of climate change, monitoring the state of forest plant communities, as key carbon-depositing ecosystems, becomes especially relevant. This article proposes a hybrid method, integrating classical geobotanical indicators and remote sensing data, to study the successional state of pine forests in the carbon polygon of the Voronezh region. The method is based on a quantitative assessment of community stability using a set of parameters: species richness, projective cover and age of the dominant (Pinus sylvestris), the ratio of ecological-cenotic species groups, and the distribution of vegetation index (NDVI) values across the net of permanent plots. The analysis revealed that the stability of forest ecosystems is not determined by the maximum or minimum values of any single factor but is of a complex nature. The results confirm that multiparameter approaches are necessary for an adequate assessment and prediction of forest ecosystem stability. Traditional geobotanical models retain fundamental value; however, supplementing them with remote sensing data significantly expands analytical capabilities. Such integration enables a more objective differentiation of communities and the construction of more accurate forecasts of their successional dynamics, which is crucial for planning reforestation measures and assessing the state of forest ecosystems.
succession, dynamics, vegetation cover, forest communities, comprehensive assessment, remote sensing
1. Gerasimova T.A., Yakovlev A.A. Ocenka vidovogo raznoobraziya rastitel'nogo pokrova v postpirogennyh nasazhdeniyah, sformirovavshihsya na staropahotnyh zemlyah v Leningradskoy oblasti // Lesa Rossii: politika, promyshlennost', nauka, obrazovanie: materialy VIII Vserossiyskoy nauchno-tehnicheskoy konferencii. Sankt-Peterburg: SPbGLTU, 2023. S. 405-407. EDN: https://elibrary.ru/FQXOTQ
2. Safonova A.N. Metody mashinnogo obucheniya pri obrabotke izobrazheniy sverhvysokogo prostranstvennogo razresheniya na primere zadach klassifikacii rastitel'nosti: dis. kand. tehn. nauk: 05.13.17; Sibirskiy federal'nyy universitet, 2020. 104 s. EDN: https://elibrary.ru/UMFVXL
3. Flora sosudistyh rasteniy Central'noy Rossii [Elektronnyy resurs]: internet-baza dannyh / avt. proekta k.b.n. L.G. Hanina (IMPB RAN); ruk. d.b.n. L.B. Zaugol'nova (CEPL RAN); sost. spiska vidov E.M. Gluhova (IMPB RAN). – Elektron. dan. – Moskva: Institut matematicheskih problem biologii RAN, 2004. – Rezhim dostupa: https://www.impb.ru/eco/index.php (data obrascheniya: 12.01.2026).
4. Avetisyan, D., Velizarova, E. & Filchev, L. (2022). Post-fire forest vegetation state monitoring through satellite remote sensing and in situ data. Remote Sensing, Vol. 14, no 24, pp. 6266. DOI: https://doi.org/10.3390/rs14246266
5. EOS Data Analytics (2023). LandViewer [An interactive online platform for satellite data analysis]. - URL: https://eos.com/landviewer/ (date of access: 12.01.2026).
6. Hwang, K., Harpold, A., Tague, C. et al. (2023). Seeing the disturbed forest for the trees: Remote sensing is underutilized to quantify critical zone response to unprecedented disturbance. Earth's Future, Vol. 11, no 8, pp. e2022EF003314. DOI: https://doi.org/10.1029/2022ef003314; EDN: https://elibrary.ru/WRQICK
7. Midolo G., Herben, T., Axmanova, I., Marceno, C., Pätsch, R., Bruelheide, H. & Chytry, M. (2023). Disturbance indicator values for European plants. Global Ecology and Biogeography, Vol. 32, no 1, pp. 24-34. DOI: https://doi.org/10.1111/geb.13603
8. Pandey, P.C. & Arellano, P. (2022). Advances in remote sensing for forest monitoring. John Wiley & Sons Ltd, 400 p. DOI: https://doi.org/10.1002/9781119788157
9. Rouse, J.W., Haas, R.H., Schell, J.A. & Deering, D.W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA. Goddard Space Flight Center 3d ERTS-1 Symp, Vol. 1, pp. 309-317.
10. Senf, C. & Seidl, R. (2022). Post‐disturbance canopy recovery and the resilience of Europe’s forests. Global Ecology and Biogeography, Vol. 31, no 1, pp. 25-36. DOI: https://doi.org/10.1111/geb.13406



