Kemerovo, Kemerovo, Russian Federation
UDK 656.11 Движение по дорожно-уличной сети. Использование дорожно-уличной сети в целом
UDK 351.811.121 Надзор за автомобильными дорогами. Регистрация. Инспекция
The large scale of the Russian road sector requires the use of digital technologies, the creation of digital twins to improve the quality of management, while limited resources should be taken into account. The purpose of the study is to develop and test an approach to the certification of highways based on the creation of digital twins, taking into account Russian regulatory requirements. In this work, digital twins of roads were obtained based on photographic data and laser scanning using a mobile road laboratory. The quality, accuracy, and completeness of digital twin information meet a Russian regulatory requirement, which makes it possible to generate technical passports for registering objects for cadastral registration. The use of digital twins, compared to field inspection of roads, has a 1.5-2.0 times lower cost and reduces the time required for completing work by 2.5-3.0 times.
cadastral registration, technical passport, roads, digital technologies, digital twin, road laboratory
1. Rossiyskiy statisticheskiy ezhegodnik. 2023. M.: Rosstat, 2023. 701 s.
2. Poslanie Prezidenta RF Federal'nomu Sobraniyu RF ot 29.02.2024 g. URL: https://www.consultant.ru/document/cons_doc_LAW_471111/.
3. Perechen' meropriyatiy po osuschestvleniyu dorozhnoy deyatel'nosti v 2024-2028 godah v otnoshenii avtomobil'nyh dorog obschego pol'zovaniya federal'nogo znacheniya, nahodyaschihsya v operativnom upravlenii podvedomstvennyh Rosavtodoru federal'nyh kazennyh uchrezhdeniy. Utv. rasporyazheniem Pravitel'stva RF ot 25.12.2023 g. №3907-r. URL: http://static.government.ru/media/files/DgZgA4B1mUMeGNbHwsYcXCd1Msb6lFvD.pdf.
4. Molyarenko O.A. Beshozyaynye avtomobil'nye dorogi v Rossii // EKO. 2017. № 4. S. 88–109.
5. Akulov A.O., Kononova S.A. Razvitie pravovogo regulirovaniya kontrolya avtodorog v usloviyah vnedreniya cifrovyh tehnologiy // Ugol'. 2023. № S12. S. 124–129.
6. Prosekov A.Yu., Rada A.O., Kuznetsov A.D., Timofeev A.E., Osintseva M.A. Environmental monitoring of endogenous fires based on thermal imaging and 3D mapping from an unmanned aerial vehicle // IOP Conference Series: Earth and Environmental Science. 2022. Vol. 981. Article no. 042016.
7. Gokool S., Mahomed M., Kunz R., Clulow A., Sibanda M., Naiken V., Chetty K., Mabhaudhi T. Crop monitoring in smallholder farms using unmanned aerial vehicles to facilitate precision agriculture practices: a scoping review and bibliometric analysis // Sustainability. 2023. Vol. 15. No. 4. Article no. 3557.
8. Uil'yamson O.I. Ekonomicheskie instituty kapitalizma: firmy, rynki, «otnoshencheskaya» kontraktaciya. SPb.: Lenizdat, 1996. 702 s.
9. Singh R., Sharma R., Akram S., Gehlot A., Buddhi D., Malik P., Arya R. Highway 4.0: Digitalization of highways for vulnerable road safety development with intelligent IoT sensors and machine learning // Safety Science. 2021. Vol. 143. Article ID 105407.
10. Tripathi A., Dadi G.B., Nassereddine H., Sturgill R.E., Mitchell A. assessing technology implementation success for highway construction and asset management // Sensors. 2023. Vol. 23. No. 7. Article ID 3671.
11. Li Y., Zhang W. Traffic flow digital twin generation for highway scenario based on radar-camera paired fusion // Scientific Reports. 2023. Vol. 13. Article ID 642.
12. Jagatheesaperumal S.K., Bibri S.E., Ganesan S., Jeyaraman P. Artificial Intelligence for road quality assessment in smart cities: a machine learning approach to acoustic data analysis // Computational Urban Science. 2023. Vol. 3. Article ID: 28.
13. Ruseruka C., Mwakalonge J., Comert G., Siuhi S., Perkins J. Road condition monitoring using vehicle built-in cameras and GPS sensors: a deep learning approach // Vehicles. 2023. Vol. 5. No. 3. P. 931–948.
14. Kano E., Tachibana S., Tsuda K. Analyzing the impact of digital technologies on the productivity of road maintenance operations // Procedia Computer Science. 2022. Vol 207. P. 1623–1632.
15. ROSDORNII sozdast cifrovoy dvoynik avtomobil'noy dorogi M-11 «Neva». URL: https://rosdornii.ru/press-center/news/novosti/rosdornii-sozdast-tsifrovoy-dvoynik-avtomobilnoy-dorogi-m-11-neva/.
16. Dorogi avtomobil'nye obschego pol'zovaniya. Cifrovaya model' avtomobil'nyh dorog. Metody sbora i obrabotki dannyh. GOST R (Proekt, pervaya redakciya). URL: https://ancb.ru/files/ck/1686829251_Proekt_GOST_R_Cifrovaya_model_avtomobilnyh_dorog.pdf