UDK 004 Информационные технологии. Компьютерные технологии. Теория вычислительных машин и систем
UDK 577.2 Молекулярные основы жизни. Молекулярная биология
The application of artificial intelligence (AI) in biotechnology implies the digitalization of processes in agriculture and livestock farming. Based on big data analysis, machine learning technologies make it possible to study, monitor and control key biological processes. AI systems integrate with other digital technologies, such as process and state sensors, cyber-physical systems, unmanned aerial vehicles, which, together with computer vision and deep learning algorithms, help to monitor the condition of agricultural crops and soil, check and predict environmental changes that affect crop yields. Smart agriculture makes it possible to assess environmental and economic sustainability through nutrient cycling, as well as to manage arable and pasture lands using sensor systems that record data on soil, plants and weather. Digital transformation and the application of artificial intelligence is a promising innovative direction that has enormous potential to increase the efficiency, accuracy and speed of research and development, and also creates new conditions for the emergence of revolutionary products and services.
artificial intelligence, food security, biodiversity, biotechnology of agricultural crops
1. David L, Thakkar A, Mercado R, Engkvist O. Molecular representations in AI-driven drug discovery: a review and practical guide. J Chemin- 2020;12(1):1–22. https:// doi.org/10.1186/s13321-020-00460-5.
2. Diaw MD, Papelier S, Durand-Salmon A, Felblinger J, Oster J. AI-assisted QT measurements for highly automated drug safety studies. IEEE Trans Biomed Eng 2022. https://doi.org/10.1109/TBME.2022.3221339.
3. van der Lee M, Swen JJ. Artificial intelligence in pharmacology research and practice. ClinTranslSci 2023;16(1):31–6. https://doi.org/10.1111/cts.13431.
4. Roche-Lima A, Roman-Santiago A, Feliu-Maldonado R, et al. Machine learning algorithm for predicting warfarin dose in caribbeanhispanics using pharmacogenetic data. Front Pharmacol 2020;10:1550. https://doi.org/10.3389/ fphar.2019.01550.
5. Lin E, Lin C-H, Lane H-Y. Precision psychiatry applications with pharmacogenomics: artificial intelligence and machine learning approaches. Int J MolSci 2020;21(3):969. https://doi.org/10.3390/ijms21030969.
6. Caudai C, Galizia A, Geraci F, et al. AI applications in functional genomics. ComputStructBiotechnol J 2021;19:5762–90. https://doi.org/10.1016/j. csbj.2021.10.009.
7. Lin J, Ngiam KY. How data science and AI-based technologies impact genomics. Singap Med J 2023;64(1):59–66. https://doi.org/10.4103/singaporemedj.SMJ-2021-438.
8. Xiao Q, Zhang F, Xu L, et al. High-throughput proteomics and AI for cancer biomarker discovery. Adv Drug Deliv Rev 2021;176:113844. https://doi.org/https://doi.org/10.1016/j.addr.2021.113844.
9. Mund A, Coscia F, Hollandi R, et al. AI-driven Deep Visual Proteomics defines cell identity and heterogeneity. BioRxiv 2021. https://doi.org/10.1101/2021.01.25.427969.
10. Petrick LM, Shomron N. AI/ML-driven advances in untargeted metabolomics and exposomics for biomedical applications. Cell Rep Phys Sci 2022;3:7. https://doi. org/10.1016/j.xcrp.2022.100978.
11. Oliveira AL. Biotechnology, big data and artificial intelligence. Biotechnol J 2019; 14(8):1800613. https://doi.org/10.1002/biot.201800613.
12. Goh WWB, Sze CC. AI paradigms for teaching biotechnology. Trends Biotechnol 2019;37(1):1–5. https://doi.org/10.1016/j.tibtech.2018.09.009.
13. Kim H. AI, big data, and robots for the evolution of biotechnology. Genom Inform 2019;17(4):e44. https://doi.org/10.5808/GI.2019.17.4.e44.
14. Turing AM. Computing machinery and intelligence. Mind 1950;59(236):433–60. https://doi.org/10.1093/mind/LIX.236.433.
15. Holzinger A, Kickmeier-Rust M, Müller H. Kandinsky patterns as IQ-test for machine learning. Lecture Notes in Computer Science LNCS 11713. Cham: Springer/Nature; 2019. p. 1–14. https://doi.org/10.1007/978-3-030-29726-8-1.
16. McCarthy J, Minsky ML, Rochester N, Shannon CE. A proposal for the dartmouth summer research project on artificial intelligence, August 31, 1955. AI Mag 2006; 27(4):12–4. https://doi.org/10.1609/aimag.v27i4.1904.
17. Bratko I, Muggleton S. Applications of inductive logic programming. Commun ACM 1995;38(11):65–70. https://doi.org/10.1145/219717.219771.
18. Muggleton SH, Schmid U, Zeller C, Tamaddoni-Nezhad A, Besold T. Ultra-strong machine learning: comprehensibility of programs learned with ILP. Mach Learn 2018;107:1119–40. https://doi.org/10.1007/s10994-018-5707-3.
19. Russell S.J., Norvig P. Artificial intelligence: a modern approach (4th edition). Upper Saddle River: Prentice Hall; 2020.
20. Hendler J. Avoiding another AI winter. IEEE IntellSyst 2008;23(2):2–4. https:// doi.org/10.1109/MIS.2008.20.
21. King MR. The future of AI in medicine: a perspective from a chatbot. Ann Biomed Eng 2022:1–5. https://doi.org/10.1007/s10439-022-03121-w.
22. Müller H, Holzinger A, Plass M, Brcic L, Stumptner C, Zatloukal K. Explainability and causability for artificial intelligence-supported medical image analysis in the context of the european in vitro diagnostic regulation. N Biotechnol 2022;70: 67–72. https://doi.org/10.1016/j.nbt.2022.05.002.
23. Holzinger A, Saranti A, Angerschmid A, et al. Digital transformation in smart farm and forest operations needs human-centered ai: challenges and future directions. Sensors 2022;22(8):3043. https://doi.org/10.3390/s22083043.
24. Naqvi RZ, Siddiqui HA, Mahmood MA, et al. Smart breeding approaches in post- genomics era for developing climate-resilient food crops. Front Plant Sci 2022:13. https://doi.org/10.3389/fpls.2022.972164.
25. Barnabas B, J´ ager K, Feh¨ er A. The effect of drought and heat stress on reproductive ´ processes in cereals. Plant, Cell Environ 2008;31(1):11–38. https://doi.org/https://doi.org/10.1111/j.1365-3040.2007.01727.x.
26. Barnes ML, Breshears DD, Law DJ, et al. Beyond greenness: detecting temporal changes in photosynthetic capacity with hyperspectral reflectance data. PLoS One 2017;12(12):e0189539. https://doi.org/10.1371/journal.pone.0189539.
27. Holzinger A, Weippl E, Tjoa AM, Kieseberg P. Digital transformation for sustainable development goals (SDGs) - a security, safety and privacy perspective on AI. Springer Lecture Notes in Computer Science, LNCS 12844. Cham: Springer; 2021. https://doi.org/10.1007/978-3-030-84060-0_1.
28. Fiorani F, Schurr U. Future scenarios for plant phenotyping. Annu Rev Plant Biol 2013;64:267–91. https://doi.org/10.1146/annurev-arplant-050312-120137.
29. Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science 2010;327(5967):818–22. https://doi.org/10.1126/ science.1183700.
30. Holzinger A, Haibe-Kains B, Jurisica I. Why imaging data alone is not enough: AI- based integration of imaging, omics, and clinical data. Eur J Nucl Med Mol Imaging 2019;46(13):2722–30. https://doi.org/10.1007/s00259-019-04382-9.
31. Rouphael Y, Spíchal L, Panzarova K, Casa R, Colla G. High-throughput plant ´ phenotyping for developing novel biostimulants: from lab to field or from field to lab. Front Plant Sci 2018;9:1197. https://doi.org/10.3389/fpls.2018.01197.
32. Rico-Chavez AK, Franco JA, Fernandez-Jaramillo AA, Contreras-Medina LM, ´ Guevara-Gonzalez RG, Hernandez-Escobedo Q. Machine learning for plant stress ´ modeling: a perspective towards hormesis management. Plants 2022;11(7):970. https://doi.org/10.3390/plants11070970.
33. Jung J, Maeda M, Chang A, Bhandari M, Ashapure A, Landivar-Bowles J. The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. CurrOpinBiotechnol 2021;70:15–22. https://doi.org/10.1016/j.copbio.2020.09.003.
34. Zhu Y, Cao Z, Lu H, Li Y, Xiao Y. In-field automatic observation of wheat heading stage using computer vision. BiosystEng 2016;143:28–41. https://doi.org/https://doi.org/10.1016/j.biosystemseng.2015.12.015.
35. Deng L, Du H, Han Z. A carrot sorting system using machine vision technique. ApplEngAgric 2017;33(2):149–56. https://doi.org/10.13031/aea.11549.
36. Iraji MS. Comparison between soft computing methods for tomato quality grading using machine vision. J Food MeasCharact 2019;13(1):1–15. https://doi.org/10.1007/s11694-018-9913-2.
37. Ribaut J, De Vicente M, Delannay X. Molecular breeding in developing countries: challenges and perspectives. CurrOpin Plant Biol 2010;13(2):213–8. https://doi. org/10.1016/j.pbi.2009.12.011.
38. Hesami M, Jones AMP. Application of artificial intelligence models and optimization algorithms in plant cell and tissue culture. ApplMicrobiolBiotechnol 2020;104:9449–85. https://doi.org/10.1007/s00253-020-10888-2.
39. Lal R. Soil carbon sequestration to mitigate climate change. Geoderma 2004;123 (1–2):1–22. https://doi.org/10.1016/j.geoderma.2004.01.032.
40. Wilhelm RC, van Es HM, Buckley DH. Predicting measures of soil health using the microbiome and supervised machine learning. Soil BiolBiochem 2022;164: 108472. https://doi.org/10.1016/j.soilbio.2021.108472.
41. de Andrade VHGZ, Redmile-Gordon M, Barbosa BHG, Andreote FD, Roesch LFW, Pylro VS. Artificially intelligent soil quality and health indices for ‘next generation’food production systems. Trends Food SciTechnol 2021;107:195–200. https://doi.org/10.1016/j.tifs.2020.10.018.
42. Marselle MR, Hartig T, Cox DT, et al. Pathways linking biodiversity to human health: a conceptual framework. Environ Int 2021;150:106420. https://doi.org/https://doi.org/10.1016/j.envint.2021.106420.
43. Blum WE, Zechmeister-Boltenstern S, Keiblinger KM. Does soil contribute to the human gut microbiome? Microorganisms 2019;7(9):287. https://doi.org/10.3390/microorganisms7090287.
44. Mueller H, Mayrhofer MT, Veen E-BV, Holzinger A. The ten commandments of ethical medical AI. IEEE COMPUTER 2021;54(7):119–23. https://doi.org/https://doi.org/10.1109/MC.2021.3074263.
45. Angerschmid A, Zhou J, Theuermann K, Chen F, Holzinger A. Fairness and explanation in AI-informed decision making. Mach Learn KnowlExtr 2022;4(2): 556–79. https://doi.org/10.3390/make4020026.
46. Holzinger K, Mak K, Kieseberg P, Holzinger A. Can we trust machine learning results? Artificialintelligenceinsafety-criticaldecisionsupport. ERCIM N 2018; 112(1):42–3.
47. Holzinger A. The next frontier: AI we can really trust. In: Kamp M, editor. Proceedings of the ECML PKDD 2021, CCIS 1524. Cham: Springer Nature; 2021. https://doi.org/10.1007/978-3-030-93736-2_33.
48. Holzinger A, Dehmer M, Emmert-Streib F, et al. Information fusion as an integrative cross-cutting enabler to achieve robust, explainable, and trustworthy medical artificial intelligence. Inf Fusion 2022;79(3):263–78. https://doi.org/https://doi.org/10.1016/j.inffus.2021.10.007.
49. Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell 2019;1(5):206–15. https://doi.org/10.1038/s42256-019-0048-x.
50. Holzinger A, Saranti A, Molnar C, Biececk P, Samek W. Explainable AI methods - a brief overview. XXAI - Lecture Notes in Artificial Intelligence LNAI 13200. Cham: Springer; 2022. https://doi.org/10.1007/978-3-031-04083-2_2.
51. Müller H, Reihs R, Zatloukal K, Holzinger A. Analysis of biomedical data with multilevel glyphs. BMC Bioinforma 2014;15(Suppl 6). https://doi.org/10.1186/1471-2105-15-S6-S5.
52. Hund M, Boehm D, Sturm W, et al. Visual analytics for concept exploration in subspaces of patient groups: making sense of complex datasets with the doctor-in- the-loop. Brain Inform 2016;3(4):233–47. https://doi.org/10.1007/s40708-016- 0043-5.
53. Roy Edwards. A new ZeroBounce study reveals countries advancing AI the fastest. https://www.enterprisetimes.co.uk/2024/08/06/a-new-zerobounce-study-reveals-countries-advancing-ai-the-fastest/