from 01.01.2017 until now
Kolomna Institute (branch) Moscow Polytechnic University (associate professor)
UDK 633.11 Пшеница. Triticum ssp.
UDK 528.8 Дистанционное зондирование. Методы и приборы
It is noted that in the context of digitalization of reclamation agriculture, the task of obtaining up-to-date reliable initial data on the state of crops in order to predict yields and assess the effectiveness of measures is acute. At the same time, difficulties arise in the prompt establishment of the timing of the onset of phenological phases and the corresponding NDVI values of the stage of culture development at which the most favorable conditions for the formation of yields are observed. The objective of this study was to analyze the results of assessment of NDVI vegetation index values from remote sensing Earth and in situ ground monitoring for winter wheat crops. General patterns of dynamics of NDVI values for winter wheat obtained from Landsat 8 satellite monitoring data and in situ conditions were revealed. Minimum values in all cases were recorded for bare soil and seedlings. Then NDVI gradually grows and reaches its maximum values in the phase of ringing and flowering (0.43 for the sample > 5%, 0.35 for Landsat 8 and in situ). The obtained values can be used to predict winter wheat yield.
remote sensing, vegetation index, winter wheat, monitoring, NDVI, Landsat 8
1. Zadoks, J.C., Chang, T.T. and Konzak, C.F. A Decimal Code for the Growth Stages of Cereals // Weed Research, 1974. Vol. 14. P. 415-421. DOI:https://doi.org/10.1111/j.1365-3180.1974.tb01084.x.
2. Sortovaya differenciaciya ozimoy myagkoy pshenicy po gruppam spelosti v lesostepi Srednego Povolzh'ya / N.N. Zaharova, N.G. Zaharov // Vestnik Ul'yanovskoy gosudarstvennoy sel'skohozyaystvennoy akademii. 2020. № 2(50). S. 91-97. DOI:https://doi.org/10.18286/1816-4501-2020-2-91-97. EDN ERKOEN.
3. Kolesnichenko V.T. Ozimaya pshenica Zalarinka v Irkutskoy oblasti (rezul'taty polevyh opytov). M.: Promekobezopasnost', 2003. 306 s.
4. Agroekologicheskaya ocenka effektivnosti fosfogipsa v zvene sevooborota s ozimoy i yarovoy pshenicey / Holom'eva L.N. // dis… kand s.-h. nauk. M.: FGBNU VNII agrohimii im. D.N. Pryanishnikova, 2024. 169 s.
5. Podlesnyh N.V. Osobennosti prohozhdeniya etapov ontogeneza, faz rosta i razvitiya, urozhaynost' i kachestvo ozimoy tverdoy i myagkoy pshenicy v usloviyah lesostepi Voronezhskoy oblasti // Vestnik Voronezhskogo gosudarstvennogo agrarnogo universiteta. 2015. № 3 (46). S. 11–22.
6. Analiz sostoyaniya oroshaemyh kul'tur po dannym distancionnogo zondirovaniya Zemli s ispol'zovaniem spektral'nogo indeksa NDVI / Zver'kov M.S., Smelova S.S. // Ekologiya i stroitel'stvo. 2024. № 1.
7. Azotnaya podkormka sovremennyh intensivnyh sortov ozimoy pshenicy v usloviyah Central'nogo Nechernozem'ya / Sanduhadze B.I., Zhuravleva E.V. // Pitanie rasteniy. 2012. № 2. S. 2–6.
8. Ambika A.K., Wardlow B., Mishra V. Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015 // Sci Data. 2016. Vol. 3. P. 1–14. DOI:https://doi.org/10.1038/sdata.2016.118.
9. Mazengo, T.E.R., Guo, Z., Liu, X. et al. Effects of irrigation and rainfed practices on Normalized Difference Vegetative Index of Wheat (Triticum aestivum L.) and its Implications on Grain Yield in Northern China // Environ Syst Res. 2023. Vol. 12, 36. DOI:https://doi.org/10.1186/s40068-023-00303-w.
10. Ispol'zovanie vegetativnogo indeksa NDVI dlya prognoza urozhaynosti zernovyh kul'tur / S.A. Rodimcev, N.E. Pavlovskaya, S.V. Vershinin [i dr.] // Vestnik NGAU (Novosibirskiy gosudarstvennyy agrarnyy universitet). 2022. № 4(65). S. 56-67. DOI:https://doi.org/10.31677/2072-6724-2022-65-4-56-67. EDN IRLXQG.
11. Korotkov A.A., Astapov A.Yu. Vegetacionnyy indeks NDVI dlya monitoringa rastitel'nosti // Nauka i obrazovanie. 2020. T. 3, № 3. S. 131–140.
12. Prishutov K.A., Astapov A.Yu., Ryazanova Yu.A. Primenenie BPLA dlya ocenki kachestva rastitel'nosti // Inzhenernoe obespechenie innovacionnyh tehnologiy v APK: sb. mat. mezhdunar. nauch.-prakt. konf. Michurinsk: Michurinskiy GAU, 2018. S. 212–217.
13. Mapping irrigated areas in Afghanistan over the past decade using MODIS NDVI / Shahriar Pervez, M., Budde, M. & Rowland, J. // Remote Sensing of Environment. 2014. Vol. 149. P. 155–165.
14. Gamon J.A., Peňuelas J., Field C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency // Remote Sensing of Environment. 1992. Vol. 41, № 1. P. 35–44. DOI: 2-s2.0-0026451960.
15. Gamon J.A., Serrano L., and Surfus J. The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels // Oecologia. 1997. Vol. 112, №. 4. P. 492–501. DOI:https://doi.org/10.1007/s004420050337.
16. Usefulness of spectral reflectance indices as durum wheat yield predictors under contrasting Mediterranean conditions / Royo C., Aparicio N., Villegas D., Casadesus J., Monneveux P., Araus J. L. // International Journal of Remote Sensing. 2003. Vol 24, № 22. P. 4403–4419. DOI:https://doi.org/10.1080/0143116031000150059.
17. Spectral reflectance to estimate genetic variation for in-season biomass, leaf chlorophyll, and canopy temperature in wheat / Babar M.A., Reynolds M.P., van Ginkel M., Klatt A.R., Raun W.R., Stone M.L. // Crop Science. 2006. Vol. 46, № 3. P. 1046–1057. DOI:https://doi.org/10.2135/cropsci2005.0211.
18. Abdushaeva Ya. M. Ocenka produkcionnogo processa rasteniy ozimoy pshenicy po vegetacionnomu indeksu // AgroEkoInzheneriya. 2024. № 2(119). S. 18-29. DOI:https://doi.org/10.24412/2713-2641-2024-2119-18-29.
19. Estimating Wheat Yield with Normalized Difference Vegetation Index and Fractional Green Canopy Cover / Goodwin, A.W., Lindsey, L.E., Harrison, S.K. Paul, P.A. // Crop, Forage & Turfgrass Management. 2018. Vol. 4. P. 1-6. 180026. DOI:https://doi.org/10.2134/cftm2018.04.0026.
20. Normalized difference vegetation index as a tool for wheat yield estimation: a case study from Faisalabad, Pakistan / Sultana S.R., Ali A., Ahmad A. et al. // Sci World J. 2014 : 725326. DOI:https://doi.org/10.1155/2014/725326.
21. Markernye uchastki cifrovoy melioracii sel'skohozyaystvennyh zemel' / A.E. Kas'yanov // Ekologiya i stroitel'stvo. 2020. № 3. S. 21-24. DOIhttps://doi.org/10.35688/2413-8452-2020-03-003. EDN KNFJIZ.
22. Primenenie aerofotos'emki s primeneniem mul'tispektral'noy kamery v komplekse s neyroset'yu v sel'skom hozyaystve / A.S. Sych, V. Balyk, A.I. Polyakov, A.V. Kartalov // Chronos. 2019. № 9(36). S. 26-28. EDN CYELPR.
23. Ocenka koefficienta zemel'nogo ispol'zovaniya metodami distancionnogo zondirovaniya na meliorativnoy sisteme Moskovskoy oblasti / Bryl' S.V., Bedenko A.E. // Ekologiya i stroitel'stvo. 2024. № 1.
24. Analiz meliorativnogo sostoyaniya orositel'nyh sistem Saratovskoy oblasti / Mazurova I.S. // Ekologiya i stroitel'stvo. 2024. № 2.
25. Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images / Peña J.M., Torres-Sánchez J., de Castro A.I., Kelly M., López-Granados F. // PLoS ONE. 2013. Vol. 8(10) : e77151. DOI:https://doi.org/10.1371/journal.pone.0077151.
26. Chikalova L.S. Eroziya pochvy kak faktor, okazyvayuschiy vliyanie na urozhaynost' produkcii sel'skogo hozyaystva // Ekologiya i stroitel'stvo. 2023. № 3.
27. Sravnitel'naya harakteristika razlichnyh vegetacionnyh indeksov pri ocenke sostoyaniya rastitel'nogo pokrova kormovyh trav / A.A. Komarov, A.D. Kirsanov, S.N. Malashin // Izvestiya Sankt-Peterburgskogo gosudarstvennogo agrarnogo universiteta. 2021. № 2(63). S. 18-29. DOIhttps://doi.org/10.24412/2078-1318-2021-2-18-29. EDN LUKMNC.