REGRESSION MODELS FOR ESTIMATING THE MARKET VALUE OF REAL ESTATE IN ST. PETERSBURG
Abstract and keywords
Abstract (English):
The work is devoted to the urgent problem of obtaining an objective mass assessment of the market value of residential real estate. The purpose of the study is to use the example of the dynamically developing market of one-room flats in St. Petersburg to obtain an optimal, in terms of accuracy, regression model of real estate assessment. Regression analysis methods had been used to analyze the influence of various price-forming factors, including the characteristics of the location of real estate and the level of comfort of living. Four optimized models of real estate assessment have been obtained. The models differ in the factors characterizing the level of comfort of living, as well as in their structure: additive and multiplicative. Testing of the obtained models based on a control representative sample made it possible to select a model with maximum estimation accuracy (MedAPE=5,2%) and recommend it for practical use. As an example of the practical use of the model, the identification of undervalued and overvalued flats based on the obtained interval estimates of the average value of the real estate have been considered.

Keywords:
economic and mathematical modeling, mass assessment of real estate, regression analysis, price-forming factors
Text
Text (PDF): Read Download
References

1. Gribovskiy S.V., Tabala D.N., Murashov V.S., Gromkova O.N. Teoriya i praktika massovoy ocenki nedvizhimosti na primere goroda Sankt-Peterburga. Teoreticheskie aspekty. // Imuschestvennye otnosheniya v RF. – 2005. - №7. – S.72-95.

2. Barinov N.P. Primenenie regressionnogo analiza v zadachah individual'noy i massovoy ocenki ob'ektov nedvizhimosti // Voprosy ocenki. – 2022. - №1. – S.34-46.

3. Magnus Ya.R., Katyshev P.K., Pereseckiy A.A. Ekonometrika. Nachal'nyy kurs. M.: Delo, 2004. 576 s.

4. Belyaeva A.V. Ispol'zovanie prostranstvennyh modeley v massovoy ocenke stoimosti ob'ektov nedvizhimosti // Komp'yuternye issledovaniya i modelirovanie. – 2012. – T.4. - №3. – S.639-650. DOI:https://doi.org/10.20537/2076-7633-2012-4-3-639-650.

5. Gorobcova A.B. Ocenka rynochnoy stoimosti kvartir s pomosch'yu metodov regressionnogo analiza // Modelirovanie i analiz dannyh. – 2019. - №2. – S.63-72.

6. Bogdanova T.K., Kamalova A.R., Kravchenko T.K., Poltorak A.I. Problemy modelirovaniya ocenki stoimosti zhiloy nedvizhimosti // Modelirovanie social'nyh i ekonomicheskih sistem. – 2020. – T.14. - №3. – S.7-23. DOI:https://doi.org/10.17323/2587-814X.2020.3.7.23.

7. Nesterova S.I. Modelirovanie ocenki prognoznoy stoimosti zhiloy nedvizhimosti na vtorichnom rynke (na primere g.o. Samara) // Vestnik mezhdunarodnogo instituta rynka. – 2017. - №1. – S.36-42.

8. Domnina S.V., Savoskina E.V., Solopova N.A. Ispol'zovanie regressionnyh modeley dlya analiza i prognozirovaniya rynka zhiloy nedvizhimosti // Fundamental'nye issledovaniya. – 2024. - №4. – S.36-41. DOIhttps://doi.org/10.17513/fr.43591.

9. Hlyupina M.A., Isavnin A.G. Modelirovanie zavisimosti i analiz cen na kvartiry ot ryada faktorov na primere goroda Elabuga // Fundamental'nye issledovaniya. – 2016. - №5. – S.213-217.

10. Leyfer L.A., Chernaya E.V. Massovaya ocenka ob'ektov nedvizhimosti na osnove tehnologii mashinnogo obucheniya. Analiz tochnosti razlichnyh metodov na primere opredeleniya rynochnoy stoimosti kvartir // Imuschestvennye otnosheniya v RF. – 2020. - №3. – S.32-42.

11. Ostrikova A.L., Selyutin V.V. Innovacionnye tehnologii massovoy ocenki zhiloy nedvizhimosti // Sistemnyy analiz i modelirovanie ekonomicheskih i ekologicheskih sistem. – 2023. - №8. – S.147-154. DOI:https://doi.org/10.23885/2500-395H-2023-1-8-147-154.

12. Shalagin A.A. Prostranstvennye metody ocenki stoimosti ob'ektov nedvizhimosti // Finansy i biznes. – 2023. – T.19. - №2. – S.59-73. DOIhttps://doi.org/10.31085/1814-4802-2023-19-2-112-59-73.

13. Ferlan N., Bastic M., Psunder I. Influential factors on the market value of residential properties // Engineering Economics. – 2017. – V.28. – N.2. – P.135-144. DOIhttps://doi.org/10.5755/j01.ee.28.2.13777.

14. Narula S.C., Wellington J.F., Lewis S.A. Valuating residential real estate using parametric programming // European Journal of Operational Research. – 2012. – V.217. – N.1. – P.120-128. DOIhttps://doi.org/10.1016/j.ejor.2011.08.014.

Login or Create
* Forgot password?